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Abstract

Three different fractal geometry methods for pattern analysis are applied on a quartz-filled late-Hercynian fracture zone in NW Sardinia.

Fragment–size distribution analysis and the box-counting method offer the possibility to (i) detect self-similarity of patterns and, therefore,

argue for a specific pattern forming process, and (ii) allow the quantification of the patterns and their comparison with other patterns from

similar natural and artificial environments. The failure of these methods in analyzing pattern anisotropies can be overcome by the Cantor-dust

method, direction-related and based on the analysis of 1-D distribution of material in relation to its 2-D orientation. With the aid of fractal-

dimension orientation diagrams (DOD), a specific parameter, the azimuthal anisotropy of fractal dimension (AAD), can be determined. It

quantifies the pattern anisotropy and, consequently, provides the basis for analyzing the pattern-forming processes. In addition, the Cantor-

dust method shows the existence of two different pattern-forming processes.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods of fractal geometry are increasingly used to

analyze a large variety of geological patterns, most

prominent amongst them fracture patterns on largely

different scales. Such methods offer the opportunity, first,

to find a quantitative measure of the pattern and, second, to

receive information on pattern-forming processes, their

interference, or about the anisotropy and the local variation

of a pattern. In the past, fracture zones have been

investigated with respect to grain-size reduction (Sammis

et al., 1986, 1987), particle distributions, based on

experiments (Marone and Scholz, 1989), and fracture

densities and patterns, mainly based on the box-counting

method (e.g. Turcotte, 1986, 1992; Hirata, 1989) or the

Cantor-dust method (Velde et al., 1990). It has become clear

that different methods show different sensitivities and

advantages in relation to the same pattern (Gillespie et al.,

1993; Kruhl and Nega, 1996) and that different types of

patterns require different analysis methods that partly still

need to be developed. In general, the validity of a variety of

existing methods has to be tested in relation to different

types of patterns. Moreover, there is still a need for more

basic knowledge about the different types of fracture

patterns and about their relationship to the underlying

processes. The present study illustrates the validity of some

common methods of fractal geometry to analyze a fracture

zone and the fracture-forming processes. In detail, the

anisotropy of the fracture pattern is quantified and the size

distributions of the fragments are used to unravel a multi-

fold fracturing process.

2. The geology of the fracture zone

The analyzed fracture zone discordantly transects the

main foliation of the Hercynian basement in the north-

western spur of Sardinia (Fig. 1) and is accompanied by

numerous small-scale sub-parallel fractures. The zone is

sub-vertical and trends NNW–SSE. It is exposed over a
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length of 100–130 m and a width of ca. 30 m (Volland,

1999) and most probably results from late-Hercynian strike-

slip movements. It is part of a larger-scale system of fault

zones in western Sardinia that is related to a rich polyphase

ore mineralization (Zuffardi, 1989; Pirri, 1996), the basis of

intensive mining in prehistoric times (Ottelli, 1996). Several

fluid pulses mobilized syn-sedimentary sulphide ores that

impregnated the surroundings of the fault zones.

The wall rocks of the fracture zone are highly brecciated.

Centimetre to micrometer sized rock fragments are enclosed

by a light-grey, whitish and partly light pink quartz matrix

(Fig. 2). Cavities with euhedral quartz crystals radially

grown around the rock fragments indicate open space during

fracture formation. Fluid infiltration into the fracture zone

occurred during several pulses as indicated by growth

zonation of the euhedral quartz crystals (Fig. 3). The smaller

fragments commonly develop rounded edges. The larger

fragments are themselves marginally fractured or totally

transected by quartz-filled fractures and mostly develop

angular shapes with often curved faces, possibly indicating

dissolution fluid penetration. In addition, on specific

sections the fragments show a weak asymmetric shape

orientation (Fig. 4a in comparison with Fig. 4b). The

locally round edges of the fragments and the incomplete

fractures, penetrating the larger fragments marginally, point

to a high hydrostatic pressure, exceeding the lithostatic

pressure and to a low differential stress of ,ca. 20 MPa as

Fig. 1. Study area around Argentiera, with fracture zones and closed mines,

within the Paleozoic basement of northwestern Sardinia.

Fig. 2. Studied sample of a fracture zone with two parallel sections a and

b. The quartz-filled fractures (white) crosscut the greenschist facies

psammopelitic wall rocks (light grey). Locally, millimetre-to-centimetre

large cavities, partly filled with euhedral quartz, are developed. Note that

the view direction for the two sections is opposite.

Fig. 3. Photomicrograph of a quartz crystal from the fracture filling. Growth

zoning is marked by planes of fluid inclusions parallel to the rhombohedral

faces of the quartz crystal against an open cavity. Long side of

photomicrograph ¼ 1.02 mm. Crossed polarizers.
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shown by Simpson (1998) for the metasediments of NW

Sardinia.

3. The measurements

Two parallel sections, 20 cm apart, from a breccia in the

fracture zone have been analyzed. Each section has an area

of 10–13 £ 13–18 cm. With the aid of an ink drawing pen

with 0.25 mm line thickness the outlines of the fragments

have been manually sketched on a transparency, laid over

the section, and subsequently digitized. Because the outline

of the fragment coincides with the outer rim of the drawing

pen line it can be precisely traced and an artificial

enlargement of the fragments by the thickness of the line

can be excluded. However, the accuracy of the sketch is

limited by the thickness of the line. Consequently, particles

smaller than ca. 1 mm2 have not been measured. All

measurements have been made on the basis of line drawings

of 1.13–1.16 times the original size. The results have been

normalized to the original size of the sections.

4. Analysis methods

Typically, the three-dimensional fracture zones are

analyzed in two dimensions and the results are transferred

to three dimensions, if necessary. In the present study we

apply and compare three methods on a breccia sample from

a fracture zone: (1) fragment–size frequency histograms,

together with the presentation of cumulative curves in log–

log diagrams, which represent the application of fractal

geometry on data sets, (2) the box-counting method that

provides information about the general fracture pattern of

the fracture zone, and (3) the Cantor-dust method that is

sensitive to the shape anisotropy of fragments.

4.1. Fragment–size frequency distributions

In sedimentology, petrology and other fields of

geoscience, e.g. grain-size distributions have traditionally

been presented as cumulative curves (e.g. Pettijohn, 1975)

and have proven their usefulness as a simple and powerful

analytical tool. In applications of fractal geometry this tool

has been taken, modified and extended. In relation to size

distributions of tectonic fragments, such as the ones

presented in this study, the data sets may show fractal

patterns and provide information about the fracturing

process.

The areas of the fragments in the two studied sections A

and B have been measured with the aid of a millimetre-grid,

lain over each of the fragments, by counting all millimetre

boxes covered by the area of the fragment. The boxes along

the fragment margins covered only partly by the fragment

are included in the measurements. This causes a slightly

increased fragment size but the increase is negligible

compared with the true fragment size. The fragment areas,

grouped in 10 mm2 steps, are presented as frequency

distribution diagrams and as cumulative frequencies in a

double-logarithmic plot (Fig. 5A and B). The frequency

distribution diagrams are in agreement with the visual

impression of the two sample sections (A and B) and show

for section A the generally larger fragment sizes. The two

log–log plots with their approximately linear correlation

prove the power-law distribution of the fragment sizes if the

largest fragments are excluded, which do not occur in a

statistically suitable number. On the other hand, the small-

est, i.e. 1 mm2 fragments strongly deviate from the linear

correlation. This is caused by the fact that some of the very

small fragments may be missed during the preparation of the

line drawing of the natural fracture pattern, as is generally

typical of the size distribution analysis of natural objects in

geoscience. The slopes of the regression lines are deter-

mined as 20.7948 (Fig. 5A) and 20.9533 (Fig. 5B). The

standard deviations 0.0053 and 0.0038 suggest that both

size distributions can be regarded as different. The smaller

slope of section A, compared with B, indicates the higher

number of large fragments in relation to the smaller

fragments, as seen in the line drawings of the sections

Fig. 4. Sketches of the sample sections a and b.
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(Fig. 4). Nevertheless, both frequency distributions follow a

power law, the implications of which will be discussed

further below.

4.2. Box-counting method

The box-counting method (Feder, 1988; Kaye, 1989;

Peitgen et al., 1992, 1998; and many others) is a widely used

method of fractal geometry due to its simplicity and

capability of being easily automated. A grid of square

boxes of side length s is superimposed on the structure,

which is on a line pattern. The numbers of boxes that are not

empty are counted. This procedure is repeated for as large a

range of s-values as possible. Finally, the number N(s) of the

transected squares are plotted versus the reciprocal size (1/s)

of the squares in a double-logarithmic diagram. These data

points exhibit a linear correlation if the investigated pattern

is a fractal. The slope m of this linear correlation represents

the fractal ‘box-counting’ dimension DB. In a plane D can

never exceed two (Hirata, 1989; Peitgen et al., 1992, 1998).

The box-counting method is suitable for giving a

quantitative measure of the geometry, the length and the

spatial distribution of fracture and fault patterns in any order

of magnification. Above all, it can be applied to patterns

with specific scaling properties (Peitgen et al., 1992, 1998)

like the studied breccia. However, in the literature different

types of box-counting methods are applied and have been

proven to be of different significance in evaluating self-

similarity and characterizing fracture and fault patterns.

They partly have failed to confirm the fractal geometry of

fracture patterns (Gillespie et al., 1993). The applied

measurement procedure was as follows.

A grid with equal-sized boxes of side length s ¼ 1/5,

1/10, 1/20, 1/25, 1/40 and 1/50 of the side length of the

initial box was superposed on the two sample section

sketches (Fig. 4a and b) as shown in Fig. 6. Then the number

of boxes of specific side length, transected by the quartz

matrix, was counted and plotted versus 1/s in a double-

logarithmic diagram (Fig. 7A and B). The relationship

between log N and log 1/s is strictly linear over about one

order of magnitude and proves the self-similarity of the

quartz-vein pattern. The slope m of the linear relationship

represents the fractal box-counting dimension DB. The

deviation of the data point with the highest 1/s-value from

the regression line is most probably due to the fact that some

of the very small fragments may be missed during the

preparation of the line drawing of the natural fracture

pattern.

Despite the qualitatively different appearance of the

fracture patterns of sections A and B (Fig. 4), with large

fragments in section A and a high number of small

fragments in section B, the fractal box-counting dimensions

DB (1.8551 for section A and 1.8873 for section B; Fig. 7)

are similar, giving an average value of ca. 1.87.

4.3. The Cantor-dust method

The sample sections show that at least in section A the

shapes of the fragments are generally anisotropic, i.e. their

axial ratios are clearly different from one and their long axes

show a preferred orientation (Fig. 4a). This type of

anisotropy cannot be investigated by the 2-D box-counting

method but requires a method working in 1-D. One such

method of anisotropy quantification is based on the Cantor

set (Peitgen et al., 1992, 1998). The classical Cantor set can

be graphically constructed by the subsequent removal of

Fig. 5. Frequency distribution (left) and double-logarithmic plot (right) of

fragment sizes measured on sample sections A and B. The numbers of

fragments larger than 400–1000 mm2 are indicated; m ¼ slope of the

regression line; coef ¼ correlation coefficient, D ¼ fractal dimension,

s ¼ standard deviation.

Fig. 6. Sketch of sample section A and part of the box-counting grid with

increasingly smaller boxes for each of the measurement steps.
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sections from an initial line of length one (Fig. 8). If the

removal procedure is repeated infinite times it leads to an

infinite number of points, the so-called ‘Cantor dust’

(Mandelbrot, 1982). The sequence of Cantor sets produced

this way represents a self-similar pattern. Since the Cantor

dust is a set of an infinite number of points arranged on a

line, but of a volume less than the line, it has a fractal

dimension D, with 0 , D , 1. Methods based on the

Cantor dust offer opportunities to study the distribution of

material in one dimension and have been applied in geology

to the thickness distribution of veins, fractures and faults

(Nagahama, 1991; Kruhl, 1994), spacing of veins (Manning,

1994; Simpson, 2000) and fractures (Velde et al., 1990,

1991; Blenkinsop, 1993; Barton, 1995), or the distribution

of geological events (Smalley et al., 1987; Dubois and

Cheminée, 1988).

Two different types of 1-D analysis are generally applied,

(i) the spacing population technique (Harris et al., 1991) and

(ii) the interval counting technique, the 1-D equivalent of

the 2-D box-counting method (Velde et al., 1990, 1991).

The first one is seen as the more suitable since (i) it infers the

fractal dimension directly from a point arrangement along

lines through the fracture pattern, and not on the basis of

another—the box-counting—procedure like the interval

counting technique, and (ii) it can discriminate different

types of planar geological structures. However, the spacing

population technique is sensitive to truncation effects (see

discussion by Gillespie et al., 1993).

On the basis of the spacing population technique we

investigated the anisotropy of the quartz vein patterns or the

shape anisotropy and alignment of the fragments, respect-

ively. Parallel lines, spaced 5 mm apart, were superposed on

the line drawing of the quartz-vein patterns of both sample

sections and oriented in 18 different directions of 108

difference each (Fig. 9). Subsequently, the lengths of the

line segments in the fragments (in Fig. 9 shown in bold)

were measured with an accuracy of 0.1 mm. Their

cumulative frequency distribution is presented in a

double-logarithmic plot and illustrated for 608 and 1408

directions in both sections (Fig. 10). The data points can be

divided into two intervals with different linear regressions

and, consequently, two different slopes of the regression

lines. This holds for the diagrams of all the other directions

(Volland, 1999). The subdivision is based on the clear

difference of the slopes m1 and m2. Despite the local

scattering of the data points, all correlation coefficients are

near or above 0.99 and all standard deviations are (mostly

far) below 0.01. For all line orientations the switch from one

regression line to the other occurs between segment lengths

of 6 and 7 mm for section A and between 3 and 4 mm for

section B. This, again, holds for the diagrams of all the other

Fig. 7. Representation of the self-similarity of the quartz-vein patterns from

the two sample sections A and B as shown in Fig. 4. In a double-logarithmic

plot (Richardson plot) the number N of the boxes with side length s,

transected by the quartz matrix, is plotted versus 1/s. The box-counting

dimension DB is equal the slope m of the linear regression line; coef ¼ the

regression coefficient.

Fig. 8. Construction scheme of a Cantor set. An initial line is divided in

several intervals, a certain number of which is removed—one of three in

this example. This procedure is repeated infinite times (in this example only

four repetitions are shown), leading to an infinite number of points that form

a Cantor set, called ‘Cantor dust’.
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directions, not shown here. Larger segments of lower

frequency (below 10–20) have been excluded because their

small number implies large fluctuations and, therefore, does

not allow an ‘objective’ computation in the large-size

domain. The deviation of the data points including the

shortest segments (below 1.2 mm for section A and 1 mm

for section B), from the regression line to lower frequencies

is most probably due to the fact that such small segments are

more easily missed during the measuring procedure than

larger segments. The high correlation coefficients, the low

standard deviations and the clear subdivision into two slopes

at the same segment length for each of the two sections

support the view of a general linear regression over about

0.5–1 decade of scale. Such small intervals of linear

regression are typical for natural geological structures and

do not argue against the validity of such correlations. The

slopes of the regression lines define the fractal dimension D

of the data set of fragment segments. Such different fractal

dimensions are common in various types of natural patterns

or natural-pattern-based data sets (Kaye, 1989). The

occurrence of different fractal dimensions points to a more

complex structure of the pattern or data set and has been

Fig. 9. Measurement procedure for the construction of direction-dependent

fragment segments, which form the data basis for the determination of

direction-dependent fractal dimensions, presented in Fig. 10. Equal-spaced

parallel lines with variable orientation, in this example 608 deviating from

the horizontal, define segments of certain lengths. For three lines the

segments are shown in bold.

Fig. 10. Double-logarithmic plot of segments formed by two lines of different orientation (608 and 1408), as shown in Fig. 8, each for sections A and B. The data

points of the four diagrams can be divided in two groups with different linear regression and, consequently, two different slopes (m1 and m2). The lengths of the

correlation lines span those data points that have been included in the logarithmic correlation (closed circles). The correlation coefficients (coef) and the

standard deviations (s) are indicated for each regression line.
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interpreted as an indication of different subsequent pro-

cesses (Kaye, 1989; Kruhl and Nega, 1996).

In order to gain information about the anisotropy of the

quartz-vein pattern, the fractal dimensions (slopes of the

regression lines) have been plotted in relation to the line

orientation. These fractal-dimension orientation diagrams

(DOD; Fig. 11) are similar to those direction-versus-slope

diagrams shown by Velde et al. (1991), based on the spacing

population technique. A complete isotropy of the pattern

would be reflected by the same fractal dimension for all

directions. In that case the data points would be oriented on

a half-circle around the centre of the diagram. However, all

four diagrams show a clear deviation from such a

configuration. The data points approach an elliptical

distribution (Fig. 11), more closely in section A and less

in section B. The orientations of the long and short ellipse

axes aand b represent the orientations of maximum and

minimum fractal dimension. The axial ratio is named

azimuthal anisotropy of fractal dimension (AAD).

5. Discussion

Three fractal-geometry-related methods have been

applied to a quartz-filled late-Hercynian fracture zone in

NW Sardinia. They provide different types of information

on the structure and development of this zone and argue for

the usefulness of fractal geometry for analyzing brittle

deformation structures.

1. Cumulative fragment–size frequency curves give a first

hint that the geometry of fragmentation is power-law

related, as is typical for fragmentation-produced particle-

size distributions (Turcotte, 1986; Sammis et al., 1986,

1987; Kaye, 1989; Nagahama, 1993). Moreover, the

generally different particle-size distributions of the two

sections are quantified. The fractal dimensions of the

distributions, i.e. the absolute values of the slopes of the

regression lines, differ from ca. 1.7948 for section A to

1.9533 for section B and reflect the different relative

quantity of the particles of different size. The value of

section A is nearly equivalent to those values found by

Marone and Scholz (1989) in their shear experiments on

quartz–sand layers. In these experiments, scale-inde-

pendent particle-size distributions with a 2-D related

fractal dimension D of ca. 1.8 were found, under a

hydrostatic pressure of 100 MPa and increasing with

increasing strain rate. The value of section B differs

clearly, compared with the comparatively low standard

deviations of 0.0053 and 0.0038. This possibly points to

an anisotropy of the fracture pattern perpendicular to the

plane of the sections. However, this can be only

evaluated with a higher number of parallel sections.

2. Despite certain limitations (Gillespie et al., 1993), the

box-counting method can be regarded as a powerful and

easily applicable method to get basic information about a

fracture pattern. In our case study, for both sections the

self-similarity of the quartz-vein pattern over about one

order of magnitude is shown, with a fractal box-counting

dimension DB of about 1.87. This is slightly higher than

most of the previously published values (Hirata, 1989;

Wanatabe and Takahashi, 1995). Hirata (1989) published

DB values of up to 1.7 for fracture patterns from the

centimetre- to the 100-kilometre-scale in different

regions of Japan, with the highest values for highly

fractured regions. Bour and Davy (1997) found DB

values of 1.9 for large-scale and intensive fracture

networks. In general, the fractal dimension of a 2-D

pattern increases when the pattern increasingly ‘fills’ the

plane (Mandelbrot, 1982). Therefore, the DB of about

1.87 indicates the high complexity of the pattern, i.e. the

high degree of fragmentation of the studied fracture zone.

On the other hand, the measured pattern does not consist

of thin lines but of more or less wide stripes or irregular

regions and, consequently, it is more ‘plane-filling’. That

may well serve as an additional reason for the relatively

high DB value.

3. A specific type of the Cantor-dust method, the spacing

population technique, applied on the segment lengths

of the fragments reveals distinct regimes of different

fractal dimensions of the data sets and the anisotropy

of the fragment shapes and orientations. Two different

linear correlations, i.e. fractal dimensions, exist for

smaller and larger fragments (Fig. 10). The switch

from one to the other linear correlation is independent

of the orientation of the measurement lines but occurs

at different values for the two sections A and B. In

general, such different fractal dimensions are inter-

preted as reflecting different combined or independent

processes or changes of the internal structure of

material, which lead to different shapes on different

scales. For example, the outlines of mineral grains

may lead to a certain fractal dimension and their

arrangement in larger arrays may result in another

fractal dimension on a larger scale, named textural

and structural fractal dimension (Orford and Whalley,

1983; Kaye, 1989). On a small scale, fractures in

rocks may be related to the shape of the crystals,

whereas on a larger scale the arrangement of the

crystals may be the governing factor. Two different

fractal dimensions of grain boundary patterns have

been interpreted as the result of two subsequent events

of grain boundary migration, i.e. of two different

deformation processes (Kruhl and Nega, 1996).

In the present study we interpret the two different fractal

dimensions, related to the fragment sizes, as the result of

two subsequent tectonic processes. The first one is related to

shearing on a regional scale, which fractured the rocks and

led to the shape and orientation anisotropy of the fragments.

This event is related to the regional late-Hercynian
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Fig. 11. Fractal-dimension orientation diagrams (DOD) of both sections A and B: In a dimensionless circular coordinate system, slopes m1 and m2 of the

regression lines, as exemplified in Fig. 9, are presented for 18 different directions in 108 steps from 08 to 1808. The 08/1808 line is shown in Fig. 9 and is identical

with the orientation of the scale bar in Fig. 4a and b. The slope values are plotted as distances from the centre (z) of the diagram towards the outside. Note that

the two diagrams of section B are reflected at the vertical (the 908 line) to get the same view direction as the section A diagrams and facilitate comparison. For

each of the four diagrams the best-fit regression ellipses are drawn on the basis of a matlab subroutine after Gander et al. (1994), together with their long and

short axes, a and b, and the inclination alpha of a versus the 0/1808 line. R is the correlation coefficient. The ratio of a and b is named the azimuthal anisotropy of

fractal dimension (AAD).
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deformation of the already cool continental crust in

northwestern Sardinia (Carmignani et al., 1979; Francescelli

et al., 1990). Adjacent to the study area, numerous fracture

zones occur isolated from each other. They possibly

represent zones of shear concentration that are related by

large-scale fracture systems, as has been suggested for

similar situations elsewhere (Bour and Davy, 1997). The

relatively high DB value of ca. 1.87 argues for a position of

the studied sample near the local centre of a fracture zone.

The second tectonic process is represented by the dilation

of the fracture zone, most probably under fluid overpressure.

The opening space was penetrated by fluids and filled by

Fig. 11 (continued )
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precipitated quartz during several stages, as indicated by the

growth zoning of the undeformed quartz crystals in the

quartz veins filling the fracture pattern (Figs. 2 and 3).

Quartz-filled en-échelon veins in the wall-rocks of the

fracture zone indicate that dilation occurred during shear-

ing. We think that this process led to additional diminution

of the existing fragments and to their dismembering to

smaller pieces, resulting in a lower number of relatively

large fragments. As a possible consequence, a power-law

relationship with a higher fractal dimension developed (Fig.

10).

The presentation of the different fractal dimensions in

relation to different directions on the measured sections A

and B (Fig. 11) is a powerful tool to visualize the 2-D

fragment patterns. However, we emphasize that the fractal

dimensions and their variation do not directly represent the

shapes of the fragments and their orientation anisotropy,

even if a general reverse relationship exists. A comparison

of Figs. 9 and 11A shows that those directions with

relatively short fragment segments are coupled with

relatively large fractal dimensions and vice versa. This is

due to the fact that a power-law relationship assumed that an

increased number of short fragments leads to a larger slope

of the regression line in the double-logarithmic length-

versus-frequency diagram (Fig. 10) and vice versa. Various

inferences can be made from these fractal-dimension

orientation diagrams (DOD).

First, the different D-values related to different direc-

tions, or the deviation of the data points from a circular

arrangement, indicate the general anisotropy of the

fragment patterns. A smooth D-function of orientation

may be expected for natural fracture patterns that are

typically highly irregular, even if this does not necessarily

hold for specific artificial patterns (see discussions by Harris

et al. (1991) and Velde et al. (1991)). The data points

roughly show an elliptic arrangement (Fig. 11) that reflects

the shearing in 2-D. The best-fit ellipse, i.e. the idealized

representation of the data points, can be taken as a measure

of the general anisotropy of the fragmentation patterns. It is

characterized by the ratio of the long and short principal

axes, the ellipticity, which increases with increasing

deviation of the ellipse shape from a circle. Consequently,

the anisotropy can be represented by one single number, the

axial ratio of the ellipse, or the ellipticity (AAD). If the

AAD is related in some way to the orientation of the stress

field, as has been suggested by Velde et al. (1990) for the

orientation variation of D based on the interval counting

technique, or to a combination of the external stress field

with internal forces and the structure of the material,

remains an open question and would need intensive, mainly

experimental, investigations.

Second, the correlation coefficient (R) is a measure of the

scattering of the data points around the best-fit ellipse and,

therefore, indicates the direction-related homogeneity of the

pattern. In addition, local specific deviations of the data

points from the elliptical arrangement indicate specific

directions of pattern anisotropy. For example, D in relation

to the 908 direction is relatively low in section A/slope m1,

section A/slope m2 and section B/slope m1 (Fig. 11), and in

relation to 608 and 708 it is relatively high, with the

exception of 608 in section A/slope m1. Because all standard

deviations of the fractal dimensions are far below 0.01, at

least these larger differences appear to be significant. The

nature and meaning of this pattern anisotropy are still

uncertain but obviously cannot be correlated straightfor-

ward with fracture orientations, as in the simple case of

orthogonal tension faults that lead to an orthogonal

direction-related distribution of D values (Velde et al.,

1990; Fig. 2). If such complex data point distributions in a

fractal dimension orientation diagram comprise additional

useful information on the pattern-forming processes and

their interaction with the material is a question of further

detailed investigations.

Third, in relation to our case study, the fragment patterns

show a clear anisotropy with AAD values ranging from ca.

1.22 to 1.37, with highest D values related to approximately

the same direction on both sections and for both linear-

regression intervals (with slopes m1 and m2), as indicated by

the similar ellipse inclination alpha (Fig. 11). If we exclude

the AAD value of section B/slope m2 because of the low

elliptical fit, indicated by the low correlation coefficient R,

the remaining three AAD values are very similar. The

similarity between the AAD values of section A/slope m1

and slope m2 can be interpreted to indicate that the fracture

zone dilation under fluid overpressure did not change the

pattern anisotropy and, therefore, possibly still acted during

shearing. The similarity between the AAD values of section

A/slope m1 and section B/slope m1 indicates the reprodu-

cibility of the AAD values on parallel sections, i.e. its

validity for the total volume of the fractured rock sample.

On one hand, it may be expected that the same fracturing

processes acted on the two sections, taken in the same

orientation from the same sample separated by a distance of

about 20 cm. On the other hand, a clear anisotropy of the

fracture pattern is only visible on section A (Fig. 4a

compared with Fig. 4b). Obviously, the anisotropy of

section B is more difficult to visualize because of the

relatively strong inhomogeneity of the pattern and the

generally smaller fragment sizes. In this case, the fractal

geometry analysis provides information not accessible by

pure visualization.

6. Conclusions

Each of the three applied methods represents a tool of its

own value that leads to information of different type and

quality. In a first step, the particle size analysis may lead to

the detection of a power-law relationship of the particle size

frequency distribution and, therefore, to a characteristic

fractal dimension of the particle sizes, arguing for one

specific fragment-forming process. In addition, the fractal
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dimension offers the opportunity of quantification and,

therefore, comparison with similar processes in another or

the same geotectonic environment and, not least, with the

results of deformation experiments. The box-counting

method leads to a fractal dimension DB that, in our case

study, characterizes the fracture or quartz-vein pattern. It

points to the self-similarity of the pattern over about one

order of magnitude and provides, by the fractal box-

counting dimension DB, a quantitative measure of the

pattern. The advantage of this method is its easy

applicability and that it offers the opportunity of a

quantitative comparison of different types of fracture

patterns. The disadvantage of the box-counting method is

the impossibility of analyzing pattern anisotropies, which

are a common phenomenon in natural as well as artificial

material.

The present study shows that the Cantor-dust method,

modified for analyzing the 1-D distribution of material in

relation to directions in 2-D, is a powerful tool for the

characterization and quantification of pattern anisotropies

and inhomogeneities. It provides information about differ-

ent regimes of fractal dimensions in relation to a distinct

pattern and, consequently, about the presence of different

subsequent or contemporaneous pattern forming processes.

On the basis of fractal-dimension orientation diagrams

(DOD), the azimuthal anisotropy of fractal dimension

(AAD) can be determined. This parameter quantifies the

pattern anisotropy and, consequently, allows the compari-

son between the anisotropies of different patterns. It is also

expected to form a useful future basis for the analysis of

pattern-forming processes and the interactions between such

processes and the structured material.
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